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ABSTRACT
For many years shear-driven turbulence was thought to provide sufficient turbulent mixing in stably

stratiÐed regions to explain stellar structure data. It has recently been argued that the mixing is too
weak and that alternative mixing mechanisms are required. The conclusion is predicated, among others,
on the key assumption that turbulence exists only for This result follows from linear sta-Ri\ Ricr\ 14.
bility analysis and contradicts a variety of data. We suggest a new deÐnition of it is the value of RiRicr :at which the turbulent kinetic energy vanishes. We Ðnd that for Pe [ 1 (no radiative losses) whileRicr D 1,
for Pe\ 1 (important radiative losses) Thus, we Ðnd more mixing. We present an inter-Ricr DPe~1º 1.
nally consistent treatment of all the physical variables, individually and collectively, and show that tur-
bulence is alive and well above the limit. However, without a speciÐc application of the model toRi[ 14a stellar case, we cannot claim that the new model will provide the mixing required by stellar data.
Subject headings : hydrodynamics È stars : interiors È turbulence

1. INTRODUCTION

It has long been thought that shear-driven turbulence
could provide the turbulent mixing necessary to explain a
variety of stellar data (Schatzman 1969 ; Zahn 1992, 1993,

Recently, however, several authors have voiced dis-1994).
satisfaction about the resulting mixing being too weak

& Baglin(Schatzman 1991 ; Maeder 1995, 1996, 1997 ;
& Meynet et al.Maeder 1996 ; Pinsonneault 1990a, 1990b ;

Demarque, & PinsonneaultPinsonneault 1997 ; Chaboyer,
et al. We reanalyze the problem using a1995 ; Talon 1997).

turbulence model which, in contrast with phenomenologi-
cal models, does not require patch-up work and, perhaps
most importantly, has a proven record of performance.

The gist of the results is as follows : the upper limit of the
Richardson number above which turbulence no longerRicrexists is not given by as assumed thus far. WeRicr\ 14suggest deÐning as the value at which the turbulentRicrkinetic energy vanishes. It follows that when Pe[ 1
(negligible radiative losses), in agreement with theRicr D 1,
data ; when Pe\ 1 (important radiative losses), RicrDPe~1[ 1. In both regimes, turbulence exists beyond the

limit. This provides more mixing.Ri\ 14Before we present the new model, it is important to gain
some physical insight into the problem. Consider the Rey-
nolds stress which is related to the mean shear by auw
turbulent momentum di†usivity l

T
:

uw\ [l
T

LU
Lz

. (1a)

Since has dimensions of velocity times length, it is cus-l
Ttomary to write it as

l
T

\ Cl
K2
v

, (1b)

where

Cl\ Cl(Ri, Pe) . (1c)

Here the Richardson number Ri characterizes the degree of
stratiÐcation and the Peclet number Pe\ wls~1 character-

izes the importance of radiative losses ; K is the turbulent
kinetic energy and v is the rate of dissipation of K. Since K
and v are solutions of two well-known di†erential equations
(see eqs. this is known as the K-v model widely[48]È[49]),
used to study shear-driven turbulence (for an extensive list
of applications, see We must also include theRodi 1984).
heat Ñux (in units of c

p
o)
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where the turbulent heat di†usivity is written ass
T
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and
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h
(Ri, Pe) . (2c)

The turbulent Prandtl number is deÐned as the ratiop
T
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where

p
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\ p
T
(Ri, Pe) .

The Richardson number Ri (e.g., &Maslowe 1981 ; Tritton
Davies is deÐned as the ratio of the squares of the1981)
Brunt-Va� isa� la� frequency N to the mean shear &,

Ri4
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&2 , (2e)

where

N24 [gab ,
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and a is the thermal expansion coefficient. The mean shear
& is deÐned as
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where is the shear and is the large-scale velocity Ðeld.S
ij
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What is the expected form of andCl(Ri, Pe) C
h
(Ri, Pe) ?

First, they must satisfy the well-known asymptotic limits of
Ri] 0 (pure shear) and Ri ] O (convection) ; in the Ðrst
case, the model must reproduce the empirical value

Cl(0, O) B 0.1 , (2h)

and in the second case it must reproduce the thermal con-
vection results (° 16) :

Pe[ 1 :
s
T
s

D Pe ,

Pe\ 1 :
s
T
s

D Pe2 . (2i)

Let us now consider the overall structure of the functions
In the case of ocean turbulence, stratiÐcation e†ectsCl,h.are unimpeded since there are no radiative losses Pe [ 1,

and is expected to decrease with Ri. The critical questionClis to determine the value at which vanishes. OceanRicr Cldata suggest When radiative losses are important,Ricrº 1.
Pe\ 1, stratiÐcation loses its power to damp turbulence,
and for a given Ri, should increase as Pe decreases ; thus,Clthe value of is larger than values of Ri than in theRicrPe[ 1 case. The precise value of can be derived onlyRicrfrom solving the full turbulence problem. Model results are
presented in Figure 1.

Next, consider Pe). Here we expect a behaviorC
h
(Ri,

quite di†erent from that of Pe). In fact, at any givenCl(Ri,
Ri, the increase in radiative losses (decreases of Pe) weakens
the correlations among velocity and temperature Ðelds and
thus must decrease correspondingly, just the opposite ofC

hwhat happens to If this behavior persists all the way toCl.Ri] 0, then the curves corresponding to di†erent Pe
cannot begin at the same point as in the case. This wouldClimply that at Ri] 0,

Pe[ 1 : C
h
(0, Pe)D Pe0 ,

Pe\ 1 : C
h
(0, Pe)D Pe . (2j)

The model results are presented in (see alsoFigure 2 ° 12).

FIG. 1.ÈModel predictions for the function see eqs.Cl(Ri, Pe)\ 2Sl ;and The Peclet number Pe is deÐned in eqs. and(1b) (44a). (15), (53a) (53b).
is treated as a free parameter to highlight the sensitivity of toPe0 Clradiative losses. As explained in the text, oceanic data (Pe[ 1) show that

turbulence exits up to RiD 1, as predicted by this model. As radiative
losses become important (Pe\ 1), the e†ect of stratiÐcation that weakens
turbulence decreases, and one has more mixing, represented by a larger Cl.

FIG. 2.ÈSame as in but for the function seeFig. 1, C
h
(Ri, Pe)\ 2S

h
;

eqs. and Contrary to the case of momentum di†usivity, an(2b) (44a).
increase in the e†ect of radiative losses decreasesC

h
.

Concerning we analyze two well-known suggestionsRicr,and then suggest a new criterion. First, consider the stan-
dard assumption that turbulence exists only for

Ri\ Ricr , Ricr\ 14 . (3a)

A problem with arose when atmospheric tur-equation (3a)
bulence was found to exist for Ri[ 14. Townsend (1958a,

invoked the e†ect of radiative losses ; that is the case1958b)
Pe\ 1. He suggested that in that case there is a renormal-
ization of Ri, to

Ri] Rieff 4 Ri Pe (3b)

and that changes toequation (3a)

Ri Pe\ Ricr , Ricr \ 14 . (3c)

Since Pe\ 1, even if is satisÐed. AtRi[ 14, equation (3c)
Ðrst sight, the renormalization has an intuitiveequation (3b)
appeal since radiative losses erode the temperature gradient
and thus weaken its role as a sink of turbulence. There is,
however, an observational fact that cannot be explained by
radiative losses alone : in the ocean there are no radiative
losses, and yet is violated : in fact, turbulenceequation (3a)
exists up to Ri D 1. The earliest laboratory data seem to be
by Taylor (see & Yaglom who found thatMonin 1971)
considerable turbulent exchange may exist even when
RiD 10. More recently, andMartin (1985) Smart (1988)
have found considerable mixing in the ocean up to Ri D 1, a
result also validated by the LES results of Large, &Wang,
McWilliams This means that, independently of the(1997).
e†ects of radiative losses, a model for stably stratiÐed turbu-
lence must be able to explain the existence of turbulence
past the limit. As shown in the new modelRicr \ 14 Figure 1,
predicts in agreement with ocean data.Ricrº 1,

Next, consider the Ñux Richardson number R
fIn the stationary and no-(Townsend 1958a, 1958b).

di†usion limit, production P of turbulence must equal its
rate of dissipation v. Since whereP\ P

s
] P

b
,

P
s
\ [uw

LU
Lz

, P
b
\ gawh , (3d)

the P\ v condition, using equations and becomes(1a) (2a)

l
T

&2(1 [ R
f
) \ v , (3e)
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FIG. 3.ÈTurbulent Prandtl number is deÐned as the ratio of thep
Tmomentum to the temperature turbulent di†usivities and is given by the

ratio For the case of no radiative losses, we reproduce the labo-Cl/Ch
.

ratory data of Webster (1964).

where the Ñux Richardson number is deÐned asR
f

R
f
\ Ri

p
T

. (3f )

On the basis of equation (3e), Townsend (1958a, 1958b)
suggested the condition

R
f
¹ 1 . (3g)

We now show that is naturally satisÐed. Spe-equation (3g)
ciÐcally, we show that

Ri] O : R
f
] constant \ 1 . (3h)

To prove without carrying out a full compu-equation (3h)
tation, we recall that when radiative losses are unimportant,
laboratory data & Helland(Webster 1964 ; Istweire 1989)
and numerical simulations & Gerz(Schumann 1995 ; Wang

FIG. 4.ÈFlux Richardson number vs. Ri as from a variety of labo-R
fratory data (redrawn from et al. The symbols refer toMaderich 1995).

di†erent authors cited in et al. and refer to either gridMaderich (1995)
generated turbulence and/or freely decaying turbulence in a stratiÐed
medium.

et al. show that stable stratiÐcation reduces the trans-1996)
fer of heat more than that of momentum, (see EvenFig. 3).
the simple Ðt

p
T
(Ri, O) \ p

T
(0)] aRi (3i)

with a [ 1 gives

Ri] O : R
f
] a~1\ 1 , (3j)

in agreement with equation (3h).
To quantify the dependence of on Pe, we use thep

TRi] O data corresponding to the case of convection and
rewritten asequation (2a)

wh \ s
T
(Pe) o b o . (4a)

From RNG (renormalization group ; & DubovikovCanuto
we know that1998),

Pe[ 1 :
s
T
s

D Pe ,

Pe\ 1 :
s
T
s

D Pe2 , (4b)

If we assume that does not depend on s since to Ðrstl
Torder, momentum transfer is immune from radiative

process, suggests thatequation (4b)

Pe\ 1 : p
T
(Ri, Pe)D p

T
(Ri)Pe~1 . (4c)

Thus,

Ri] O : R
f
] a~1Pe\ 1 ,

which also satisÐes The laboratory data areequation (3h).
presented in Kono-Figure 4 (Linden 1979, 1980 ; Maderich,
valov, & Konstantinov 1995).

We propose that the true is set by the behavior of theRicrturbulent kinetic energy K. When radiative losses are
important, stratiÐcation is much less e†ective and K
decreases with Ri much more slowly. K vanishes at a value
of Ri above which turbulence no longer exists. Thus, we
shall deÐne as the solution of the equationRicr

K(Ricr)\ 0 , (5a)

with

Ricr\ Ricr(Pe) . (5b)

We expect the following conditions to be satisÐed :

Ricr(Pe\ 1) [ Ricr(O) [ 14 . (5c)

The last condition is demanded by the ocean data discussed
earlier, while the Ðrst inequality is required by physical con-
siderations.

Finally, we discuss the temperature gradient. None of the
above turbulence variables is a measurable quantity as
such, only the Ðnal temperature gradient is, for example,
with helioseismological data that provide the sound speed

& Christensen-Dalsgaard The standard Ñux(Canuto 1998).
conservation law is the radiative Ñux),(F

r
F
r
] FC\ const , (6a)

is no longer valid since Reynolds stresses can be transported
by the large-scale Ñow giving rise to a Ñux which mustU

j
q
ijenter the Ñux conservation law. In fact, the dynamic equa-

tion for the mean temperature (see below, dependseq. [18])
on As a consequence, the new Ñux conservation lawU

i
.
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reads

F
i
r ] F

i
c] F

i
ie ] oU
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p
T ] K
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] K ] G)d

ij
] q

ij
]

\ constant . (6b)

What is conserved is the sum of the radiative, convective,
and turbulent kinetic energy (Fie) Ñuxes plus a new term
that depends on the large-scale Ñow, is theU

i
; K

u
\ 12Ui

2
kinetic energy of the large-scale Ñow, G is the gravitational
Ðeld, and are the Reynolds stresses representing turbu-q

ijlence. As an example, suppose i \ 3, U \ U(z), V (z), 0, and
use equations and Using(1a), (2a), (2f ).
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The turbulence model presented here satisÐes all the
above requirements. It was constructed using renormaliza-
tion group methods (RNG) and new data from laboratory,
direct and large eddy simulations (DNS and LES,
respectively) of shear, convection, stable stratiÐcation, etc.
In this new model : (1) all the dynamic equations governing
the turbulent variables are derived from the Navier-Stokes
equations and the entropy equations, (2) the inclusion of
shear, buoyancy rotation, etc., does not require additional
assumptions since the general rules are set at the beginning,
(3) the closures required to treat the higher order moments
have been tested on di†erent Ñows, (4) the extension to cases
of astrophysical interest (low Prandtl number, small Peclet
number, etc.) is carried out by employing a two-point
closure model that allows a proper calculation of the rele-
vant timescales that depend on the Peclet number. We
present four turbulence models : (1) all the turbulent vari-
ables satisfy dynamic equations, (2) only K and its rate of
dissipation v satisfy dynamic equations while all the other
turbulent variables are given in algebraic form, (3) only v
satisÐes a dynamic equation while all the other turbulent
variables are algebraic, and (4) all the turbulent variables
are given in algebraic form.

2. MAIN PHYSICAL PARAMETERS

In order to describe the Ñow under consideration, we
need to introduce several variables. Much as the large-scale
variables are characterized by N and &, shear-driven, strati-
Ðed turbulence is characterized by a shear number,

Sh \ l&K~1@2 \ K
v

& , (8)

and a Froude number,

Fr \ K1@2
lN

\ v
K

N~1 . (9)

The Richardson number Ri is deÐned as

Ri4 (FrSh)~2 \N2
&2 . (10)

Fr quantities the role of nonlinear interactions versus the
e†ect of stratiÐcation,

Fr \ v2l~1
Nv

\ v
lN

\K1@2
l

N~1 (11)

in the same way that the Reynolds number quantiÐes the
role of nonlinear interactions versus viscous forces,

Re\ v2l~1
lvl~2\ vl

l
\ K1@2l

l
. (12)

When Fr[ 1, turbulent Ñows are only slightly a†ected by
stratiÐcation, and the inertial Kolmogorov spectrum
applies ; when Fr\ 1, turbulence is a†ected by stratiÐ-
cation, and Fr \ 1 is the demarcation between the two
regimes (often called ““ turbulence ÏÏ and ““ wave ÏÏ regimes).
Fr \ 1 occurs at the Ozmidov length scale (Dougherty

Kaimal, &1961 ; Lumley 1964 ; Ozmidov 1965 ; Hunt,
Gaynor 1985)

l0\K1@2
N

\
A v
N3
B1@2

. (13)

Scales are strongly a†ected by stratiÐcation, whilelº l0those with are not. The problem also possesses fourl ¹ l0timescales :

1
2

q\K
v

, qh \ h6 2
vh

, q
N

\ N~1 , q& \ &~1 . (14)

Finally, the Peclet number is deÐned as the ratio of the
radiative timescale l2s~1 to the turbulence timescale q :

Pe\ 1
2
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sK

\ 1
2

cv2
K2
vs

\ 4n2
125

K2
vs

. (15)

Here Ko \ 5/3 is the Kol-K \ (3Ko/2)v2@3k0~2@3, l\n/k0,mogorov constant, and

cv\ n
A 2
3Ko

B3@2
. (16)

3. LARGE-SCALE DYNAMICS

The large-scale Ñow is characterized by a velocity Ðeld U
iwhich satisÐes the following dynamic equation (D/Dt 4

L/Lt] U
j
L/Lx

j
) :

D
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ij
P] q

ij
) . (17)

The Reynolds stresses are seen to contribute to the gas
pressure.

The second equation is for the mean temperature T
which reads (Canuto 1997)
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Here and are the kinetic energies (perK \ 12qii K
u
4 12U

i
2

unit mass) of turbulence and of the large-scale Ñow; G is the
gravitational Ðeld,

g
i
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DG
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, (19)
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and is the radiative Ñux. The convective and turbulentF
i
r

kinetic energy Ñuxes are deÐned as

F
i
c 4 c

p
ou

i
h , F

i
ie \ 12oq2u

i
, 12q24 u

i
u
i
. (20)

In the stationary case, L/Lt \ 0, we obtain equation (6b).
As one can see, the equations for the large-scale Ðelds U

iand T depend on turbulence via the Reynolds stresses q
ijand the convective Ñuxes which must be provided by aF

i
c

turbulence model.

4. TURBULENCE MODEL

Turbulence models can be divided into two categories :
one-point closures and two-point closures. The Ðrst type
has been widely employed in the study of engineering Ñows,
while the second has been developed mostly to study tubu-
lence as such but rarely has the model been used in practical
applications. The gap has been closed recently by the work
of & DubovikovCanuto (1996a, 1996b, 1996c, 1997a,

who used the renormalization group to1997b, 1997c, 1998)
derive a two-point closure model which is then integrated
over all wavenumbers to obtain the one-point closure which
can be directly used in the astrophysical context. The diffi-
culties of closure and the state of the art models are dis-
cussed in Canuto (1992, 1993, 1994).

In addition to the large-scale components (T , theU
i
),

velocity and temperature Ðelds contain Ñuctuating parts
(h, with With them, one constructs the fol-u

i
), h6 \ u6

i
\ 0.

lowing physical variables (second-order moments).

u
i
u
j
\ q

ij
(Reynolds stresses) , (21)

K 4 12q
ii

(turbulent kinetic energy),

u
i
h \ h

i
(convective Ñuxes) , (22)

h6 2\ (temperature variance) , (23)
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ALu
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B2
, vh \ s

ALh
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B2

(dissipation rates of K and h6 2) , (24)

for a total of 6 ] 3 ] 1 ] 2 \ 12 variables, each of which
satisÐes a separate dynamic equation, and each of which
depends on the others so that it is not possible to construct
an expression for the convective Ñux without solving the
equation for the Reynolds stresses, and vice versa.

1. Turbulent kinetic energy, K :

DK
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s
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b
[ v , (25a)
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and are the rates of production of K by shear andP
s

P
bbuoyancy, and is the transport of the Ñux of turbulentD

f
(K)

kinetic energy (per unit mass) deÐned in equation (20).
2. Temperature variance, h2 :
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and and are the rates of production and transport ofPh D
fthe Ñux of temperature variance.

3. Reynolds stresses, b
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The traceless tensors B, R, and Z are deÐned as
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The shear is deÐned in while the meanS
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equation (2g)
vorticity tensor is deÐned byV
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The di†usion term is deÐned as
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4. Heat Ñux, h
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i
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with

D
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i
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i
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j
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ph) . (28b)

5. Dissipation rate, vh :
vh \ qh~1h6 2 . (29)

6. Dissipation rate, v :

Dv
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f
(v) \ vK~1(c1Ps

] c3P
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) [ c2 v2K~1 , (30a)
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Since we have assumed an algebraic for the number ofvh,dynamic equations is 11.

5. CRITICAL INGREDIENT : TIMESCALES AND THEIR

PECLET NUMBER DEPENDENCE

It is clear that the above equations cannot be solved
unless the turbulence model provides the timescales q

pv
, q

ph,and They originate in the following wayqh. (Canuto 1992,
The Navier-Stokes equations for the turbulent1993, 1994).

velocity Ðeld contain pressure terms which,Lp/Lx
i
4 p,iwhen one generates the equations for and bring intob

ij
h
i
,
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the problem vectors and tensors of the type

%
i
4 hp,i , %

ij
4 u

j
p,i] u

j
p,i . (31)

Since the Ñuctuating pressure p does not satisfy the hydro-
static equilibrium equation, these higher order terms must
be modeled in terms of second-order terms. The process
brings about the timescales (pressure-temperature) andq

ph(pressure-velocity), as well as the constants aÏs andq
pv

c1.The timescale was deÐned in Since K and vqh equation (29).
satisfy equations and the dynamic timescale(25a) (30),
q\ 2K/v is known. The question then arises as to what are
the relations

(qh, q
ph, q

pv
) versus q . (32)

It is quite clear that since the radiative timescale may
become shorter than q, cannot be satisÐedequation (32)
with only constants of proportionality. One must go
beyond the present one-point formalism and employ a two-
point closure & Dubovikov The results are(Canuto 1998).
as follows :
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~1 Pe]~1 . (33c)

The turbulent Prandtl number as a function ofp
t
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t
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Pe is given by
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5
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D
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where p is the Prandtl number, typically p > 1. The con-
stants a and b are given by

2a \ (c2] 4c)1@2[ c , b \ a ] c . (34b)

With c\ 3/10, we have

a
b

\ 0.58 , b \ 0.72 . (34c)

It is clear from equations that(33)È(34a)

Pe[ 1 :
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,
q
ph
q

,
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D Pe0 , (35a)

whereas for

Pe\ 1 :
q
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q

D Pe0 ,
Aq

ph
q

,
qh
q
B

D Pe . (35b)

conÐrms what we assumed in derivingEquation (35b)
radiative losses a†ect the temperature Ðeldequation (4c),

more than the momentum Ðeld. We recall that Pe is deÐned
by equation (15).

6. DIFFUSION TERMS

The third-order moments, equations (25c), (26b), (27f ),
and satisfy the dynamical equations derived earlier(28b),

eqs. [55a]È[55d] ;(Canuto 1992, Appendix A).

7. ALGEBRAIC MODELS

Although the model presented thus far is complete and
allows the calculation of the turbulent variables of interest,
it is obviously rather complex since it entails 11 di†erent
equations. In this section, we present a model in which we
retain only two of the 11 di†erential equations, those for K
and v. In the remaining equations, we neglect the D/Dt term
and the di†usion terms. After some algebra we obtain

Reynolds stresses :

b
ij
\ [ 415Kqpv S

ij
] 12b5 q

pv
B
ij
[ 12qpv(1 [ a1)&ij

[ 12q
pv

(1[ a2)Zij
. (36)

Convective Ñuxes :

A
ik

h
k
\ (s

T
)
ij
b
j
. (37a)

The turbulent conductivity tensor is given by

(s
T
)
ij
\ q(b

ij
] 23d

ij
K) (37b)

and

A
ij
\ q

q
ph

d
ij
[ (1 [ c1)qqh j

i
b
j
]
A
1 [ 3

4
a3
B
qS

ij

]
A
1 [ 5

4
a3
B
qV

ij
. (37c)

The fact that the right-hand side of dependsequation (37b)
on itself makes the analytic solution in the three-b

ijdimensional case somewhat cumbersome although manage-
able with symbolic algebra.

We recall that the ““ standardÏÏ model is an approximation
to equations and that retains only the Ðrst terms in(36) (37)
equation (36) :

b
ij
\ [l

T
S
ij

, l
T

\ 16
75

K2
v

, (37d)

while on the right-hand side of one retainsequation (37b)
only the isotropic term, and the matrix A is taken to be
diagonal. Thus,

h
i
\ s

T
b
i
, s

T
\ 4

3
Aq

ph
q
B K2

v
. (37e)

In & ChristensenÈDalsgaard it was discussedCanuto (1998)
how models (37d) and (37e) fail to reproduce the measured
values of at the surface of the Sun and that in order tob

ijreproduce such data one needs to include vorticity and(Z
ij
)

buoyancy in In addition, in case the(B
ij
) equation (36).

temperature gradient is nonzero only in the z-direction,
yieldsequation (37e)

uv\ 0 , uh \ vh \ 0 ,

which disagrees with laboratory data et al.(Komori 1983 ;
Schumann, & Elgobashi & YamazakiGerz, 1989 ; Gerz
As shown below, the present model is in agreement1993).

with the data.

8. VERTICAL DIFFUSIVITIES

In this section we present the analytic solution of
for a case of direct astrophysical interest.equations (36)È(37)
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The temperature T and large-scale Ñow U are taken to be

LT
Lx

i
]

LT
Lz

d
i3

, U
i
\ [U(z), V (z) , 0] , (38a)

and thus shear and vorticity tensors are given by

S
ij
\ 12

1 0
0

LU/Lz

0
0

LV /Lz

LU/Lz
LV /Lz

0

2
,

V
ij
\ 12

1 0
0

[LU/Lz

0
0

[LV /Lz

LU/Lz
LV /Lz

0

2
. (38b)

In order to homogenize the notation, we introduce the
dimensionless variables :

j \ q
pv
q

, j1\ 4
15

j , j2\ 1
2

(1 [ a1)j ,

j3 \ 1
2

(1 [ a2)j , j4\ 1
2

b5 j , j5\ q
q
ph

,

j6 \ 1 [ 3
4

a3 , j7\ 1 [ 5
4

a3 , j8\ (1 [ c1)
qh
q

. (38c)

Equations can be solved using symbolic algebra.(36)È(37)
The results are as follows :

Reynolds stresses :

uw\ [l
T

LU
Lz

, vw \ [l
T

LV
Lz

, (39a)

uv\ (j2] j3)qlT
LU
Lz

LV
Lz

. (39b)

Timescales (see eqs. [33a]È[34b]) :

1
2

q\ K
v

. (40)

Turbulent kinetic energies :

u2[ 2
3

K \ 1
3

ql
T

C
(j2] 3j3)

ALU
Lz
B2[ 2j2

ALV
Lz
B2D

] 2
3

j4 s
T

qN2 , (41a)

v2[ 2
3

K \ 1
3

ql
T

C
(j2] 3j3)

ALV
Lz
B2[ 2j2

ALU
Lz
B2D

] 2
3

j4 s
T

qN2 , (41b)

w2[ 23K \ 13qlT(j2[ 3j3)&2[ 43j4 s
T

qN2 . (41c)

Mean shear :

&24
ALU

Lz
B2 ]

ALV
Lz
B2

. (42)

Mean temperature gradient b (see eq. [2f]) :
Heat Ñuxes :

wh \ s
T

b (43a)

uh \ [j5~1
C
l
T

] 1
2

(j6] j7)sT

D
bq

LU
Lz

, (43b)

vh \ [j5~1
C
l
T

] 1
2

(j6] j7)sT
D
bq

LU
Lz

, (43c)

Turbulent momentum and heat di†usivities :

l
T

\ 2Sl
K2
v

, s
T

\ 2S
h
K2
v

. (44a)

Turbulent Prandtl number, p
T
:

p
T

\ l
T

s
T

\ Sl
S
h
. (44b)

Dimensionless functions, Sl,h :
DSl\ s0] s1(qN)2] s2(q&)2 , (45a)

DS
h
\ s4] s5(qN)2] s6(q&)2 , (45b)

D\ d0] d1(qN)2] d2(q&)2
] d3(qN)4] d4(q2N&)2] d5(q&)4 . (45c)

Dimensionless variables, s
k
:

s0\ 32j1 j52 , (46a)

s14 [j4(j6] j7) ] 2j4 j5(j1[ 13j2[ j3)
] 32j1j5 j8 , (46b)

s24 [ 38j1(j62[ j72) , s44 2j5 , s5\ 2j4 , (46c)

s6\ 23j5(3j32[ j23) [ 12j5 j1(3j3[ j2)] 34j1(j6[ j7)
(46d)

Dimensionless variables, d
k
:

d0\ 3j52 , (47a)

d1 4 j5(7j4] 3j8) , d24 j52(3j32 [ j22) [ 34(j62[ j72) ,

(47b)

d34 j4(4j4] 3j8) , d54 14(j22[ 3j32)(j62[ j72) , (47c)

d44 j4[j2 j6[ 3j3 j7[ j5(j22[ j32)]] j5 j8(3j32[ j22) .

(47d)

9. FIRST NONLOCAL MODEL

The above relations can be used together with the non-
local equations for K and v.

Turbulent kinetic energy, K :

DK
Dt

] D
f
(K) \ l

T
&2[ s

T
N2[ v , (48)

and dissipation, v :

Dv
Dt

] D
f
(v) \ vK~1(c1 l

T
&2[ c3 s

T
N2) [ c2 v2K~1 .

(49)

10. SECOND NONLOCAL MODEL

In this model, is taken in its algebraic,equation (48)
local form by neglecting the left-hand side altogether.
This is physically equivalent to assuming that
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production \ dissipation,

v\ l
T

&2[ s
T

N2\ l
T

&2(1 [ R
f
) . (50a)

Using equations and becomes(44) (40), equation (50a)

(q&)2Sl[ (Nq)2S
h
\ 2 . (50b)

Using equations becomes an(45a)È(45c), equation (50b)
equation for the timescale q (in units of &)

(q&)24 t. (51a)

The result is

At2] Bt] C\ 0 , (51b)

A4 (s5] 2d3) Ri2[ (s1[ s6[ 2d4) Ri[ s2] 2d5 ,

B\ (s4] 2d1) Ri[ s0 ] 2d2 , C\ 2d0 (51c)

The simplicity of may be deceptive. In fact,equation (51b)
when Pe[ 1, all the and values are independent of Pe ;s

k
d
kA, B, C depend only on Ri, and is indeedequation (51b)

very simple. However, when Pe\ 1, A, B, C depend on Pe,
which in turn depends on both (K, v) or (q, v) that(eq. [15]),
is, Pe depends on t itself, and is no longer aequation (51b)
second-order equation. An expression for Pe is given in the
next section.

11. FULLY LOCAL MODEL

One may want to sacriÐce even by takingequation (49)
its local limit, which we write as

v\ K3@2
lv

. (52)

It is indeed a considerable sacriÐce for is not easy tolvmodel. Before we do so, let us remark that once equation
is adopted, K and Pe, given by can be(52) equation (15),

expressed as

K
K0

\ t~1 ,
Pe
Pe0

\ t~1@2 , (53a)

where

K0\ 4lv2&2 , Pe0\ 12cv2 lv K01@2s~1\ cv2 lv2&s~1 . (53b)

Once a model for is provided, the model becomes fullylvalgebraic.

12. RADIATIVE ENERGY LOSSES

When Pe\ 1, we have from thatequation (35b)

q
q
ph

[ 1 ,
q
qh

[ 1 , (54)

and thus from it follows thatequation (38c) j5 DPe~1[ 1,
From we then havej8DPe\ 1. equations (46a)È(46d),

s0D j52D Pe~2 , s1,4,6 D j5D Pe~1 , s2,5 D j50D Pe0 ,

(55a)

while from equations we have(47a)È(47d),

d0,2 D j52D Pe~2 , d1,4 D j5D Pe~1 ,
(55b)

d3D j5~1D Pe , d5 D j50D Pe0 .

13. MODELING THE LENGTH SCALE l
v

We begin by writing aslv
lv \ cv~1* f (N, &) (56a)

and require that f (0, 0)\ 1. We note that with equation
and are consistent with the Kolmo-(16), equations (52) (56a)

gorov energy spectrum E(k) \ Kov2@3k~5@3. We have called
* the size of the largest eddy, A plausible model isk0*\n.

or, what is the same in the case of a polytrope,*\ H
p*\ z. The distortion of the Kolmogorov spectrum due to

stratiÐcation and shear is represented by the dimensionless
function f (N, &). Even though a satisfactory theory of the
energy spectrum E(k) under shear and stable stratiÐcation is
still not available, there is some consensus on the overall
shape of E(k). Three separate regimes have been identiÐed
with the corresponding spectra et al.(Gargett 1981) :

I : E(k) \ (vN)1@2k~2
II : E(k) \ cN2k~3 (56b)

III : E(k) \ Kov2@3k~5@3

Oceanic data et al. suggest(Gargett 1981 ; Gargett 1989)
cB 10, while atmospheric data suggest cB 100 &(Dewan
Good so that the interval between regimes I and II1986)
may be one or two decades. Furthermore, if one uses the
spectra I, II, and III and computes the Froude number,

one Ðnds thatequation (11),

I : Fr \ 1 , Ri[ 1 ,

II : Fr \ 1 , RiD 1 , (56c)

III : Fr [ 1 , Ri\ 1 ,

which means that we are mostly interested in regions II and
III which coincide at a length scale which is precisely the
Ozmidov scale (eq. [13]).

Using empirical arguments rather than a model for the
energy spectrum, et al.Deardor† (1980), Hunt (1988),

and & Hunt have sug-Dubrulle (1993), Fernando (1996)
gested the relations :

f (N, 0) \ 0.76
K1@2
*N

, f (0, &)\ 2.76
K1@2
*&

. (56d)

Several comments are in order. First, since equation (56d)
do not satisfy the condition f (0, 0) \ 1, they have only a
limited validity. Second, if in the Ozmidov scale, we substi-
tute the resulting length scale is Deardor†Ïsequation (52),
result, the Ðrst of Third and most important-equation (56d).
ly, f (N, 0) implies that

qD
K
v

D lvK~1@2D N~1 , qN \ constant , (57a)

which in turn implies that

t\ (q&)2D Ri~1 . (57b)

On the other hand, yields a t that increasesequation (51b)
with Ri ; this can be consistent with equation at only(57b)
one value of Ri, while Ri must be allowed to assume a range
of values. A similar conclusion can be reached using the
second of equation (56d).

Several people have tried to construct a model for
E(k, N, &). model can be translated into aLumleyÏs (1964)
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function f (N, &) of the form & Canuto(Cheng 1994) :

f (N, &) \ [1 [ c1 Fr~2 (1 [ c2 p
T

Ri~1)]~3@2 , (57c)

where The two constants are given byp
T

\p
T
(Ri).

c14 (2n231@2)~1 Ko3@2 , c2\ 0.4È0.6 . (57d)

The FroudeÏs number is deÐned as

Fr \ K1@2
*N

. (57e)

As discussed in & Canuto formula-Cheng (1994), LumleyÏs
tion is valid for small levels of stratiÐcation. Weinstock

suggested an improvement of LumleyÏs model. The(1978)
corresponding form of f (N, S) was worked out by &Cheng
Canuto to be(1994)

f (N, &)\ [(1[ A2B2)1@2[AC]~3 , (58a)

where

A4 a1(1 [ c2 p
T

Ri~1) , B~1 \ a2] Fr2 ,

C~1 \ a3] Fr2 ,

a1\ 8.6810~3 Ko3@2 , a2\ 0.025 , a3\ 0.014 .

(58b)

Finally, & Canuto improved on bothCheng (1994)
LumleyÏs and WeinstockÏs model and checked their results
against LES data (see their Fig. 5). The function f (N, &) is
given by the following expression :

f (N, &) \ [1 ] a Fr~2 (1 ] b Fr~4@3)~1]~c , (58c)

where R
f
\ c2 :

a \ 2(3n2)~1()[ 1) , b \ 0.12()[ 1 [ 32)~1)4@9 ,

c\ 32 , (58d)

and R
f
[ c2 :

a \ 4(5n2)~1) , b \ 0 , c\ 54(1 [ )~1) ,

)\ 1 ] 31@2
4

Ko3@2 (c2 p
T

R
i
~1[ 1) . (58e)

More recently, & Cheng have furtherCanuto (1997)
improved their model, and their new expression for f (N, &)
is equation (6a) of that paper. In the case in which one
considers only shear, f (0, &) simpliÐes considerably :

2f~2@3\ 1 ] p Sh2 ] (1] 2p Sh2[ 45p2 Sh4)1@2 , (58f )

where

Sh 4 *&K~1@2 , p \ 18(2n231@2)~1 Ko3@2 . (58g)

14. TURBULENT PRESSURE

In many instances of astrophysical interest, e.g., in helio-
seismology & Christensen-Dalsgaard one(Canuto 1998)
needs to know the pressure contributed by the turbulent
motion itself. This can be seen in the equations for the
large-scale Ñow U, where the ““ e†ective pres-equation (17),
sure tensor ÏÏ is

Pd
ij
] ou

i
u
j
. (59a)

When becomes the hydrostatic equilibriumequation (17)
equation, the turbulent pressure is

p
t
\ ow6 2 . (59b)

Using one obtainsequation (41c),

p
t
(oK)~1 \ 23 ] 13t[(j2[ 3j3)Sl [ 4j4 S

h
Ri] . (59c)

Not surprisingly, is not a constant fraction of the turbu-p
tlent kinetic energy.

15. ANALYSIS OF TOWNSENDÏS WORK

For a complete treatment of the problem, one needs the
dynamic equations for the six variables :

K , h6 2 , uw , wh , v , vh . (60)

used only two dynamic equations,Townsend (1958a, 1958b)
for and K, his equations (3.3) and (3.7). To treat theh6 2
remaining four, he introduced four unknown functions, k

u
,

Kh, L h, L v :

k
u
\ uw(w2)~1 , kh\ wh(w2h2)~1@2

vh\ 13L h~1K1@2h6 2 , v\ K3@2L ~1 . (61a)

There is a slight di†erence in the equations for usingh6 2 :
equations and becomeequation (29) (26a) (26b)

bwh \ h2qh~1 , (61b)

where b is deÐned in TownsendÏs equationequation (2f ).
reads(3.3)

bwh \ h2(qh~1] q
*
~1) 4 h2qhR~1 , (61c)

qh~1 ] q
*
~14 qhR~1 , (61d)

since he included the logarithmic rate of cooling (which we
call rather than his ““ b ÏÏ to avoid confusion with our b).q

*
~1

His length scale and our are related byL h qh
qh~1 \ 13L h~1(w6 2)1@2 , (61e)

while his see his equation (3.7) and ourL v \ lv, equation
which also means that his is our K. Thus,(52), w6 2

L v
L h

\ 3
2

q
qh

. (61f )

Combining TownsendÏs equations (3.3) and (3.7), one
obtains his basic result :

R
f
4 Ri p

T
~1 , (62a)

p
T

\ p
T
(Ri, Pe) , (62b)

R
f
\ 12H[1 [ (1 [ 12A Ri H~2)1@2] , (62c)

H \ 1 ] 3L h q
*
~1
A
k
u
L v

LU
Lz
B~1

, (62d)

A\ L h
L v

Akh
k
u

B2
. (62e)

TownsendÏs relations (62c)È(62e) are correct, but since the
model is unable to provide the function thep

T
, k

u
, kh, k

u
,

model is unpredictive.
Criterion (3a) was arrived at in the following way : one

requires that the square root in be positive, which(62c)
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implies that

Ri\
H2
12

L v
L h

Ak
u

kh

B2
. (62f )

On the other hand, from equations and we have(24) (29)
that which gives Equatingvh D sh6 2l~2 D qh~1h6 2 qh D l2s~1.
this with yields and thus(61e) L hD s~1wl2,

L v
L h

D Pe~1 , (62g)

which transforms into(62f )

Pe Ri\
H2
12
Ak

u
kh

B2
. (62h)

If one assumes that the right-hand side is constant, one
obtains the relation

Pe Ri\ Ricr , (63a)

Ricr 4
H2
12
Ak

u
kh

B2
. (63b)

If one further assumed that and Pe \ wl/s, onel
T

\ 1/3wl
derives the relation

l
T

\ 1
3

s
Ricr
Ri

, Ri\ Ricr\
1
4

, (63c)

which has been widely employed (e.g., Zahn 1992, 1993,
& Meynet1994 ; Maeder 1995, 1996, 1997 ; Maeder 1996).

Let us now use the new turbulence model to compute the
ingredients in We employ equationsequation (62c). (39a),

for and We derive(43a), (61c) h6 2, (44).

k
u
2\ tSl2 , kh2 \ qqhR~1 S

h
, (64a)

L h
L v

\ 2
3

qh
q

,
Akh
k
u

B2 \ q
qhR

p
T
~1(tSl)~1 , (64b)

A\ 2
3

(tSl)~1p
T
~1 qh

qhR
, H \ 1 ] 2

qh
q
*

(tSl)~1 , (64c)

where t is deÐned in equation then(51a). Equation (62c)
becomes

R
f
\ 12HM1 [ [1[ 4R

f
q
*

qhR~1(H [ 1)H~2]1@2N . (65a)

This is an equation for which can easily be solved withR
fthe result

2(tSl)~1\ 1 [ Ri
/

T
, (65b)

p
T

\ p
T
(Ri, Pe) . (65c)

This is nothing but P\ v, and/or whichequations (50b) (3e)
led to equation which we have already discussed in(3g) ° 1.

16. THE Ri] O LIMIT : CONVECTION

Here we show that in the no-shear case, Ri] O, the
previous model yields the well-known expressions for the
convective Ñux. When shear vanishes, the only source is
buoyancy, which must be positive and thus N2\ 0, b [ 0,

From we have+[ +ad[ 0. equation (50a)

v\ s
T

oN2 o , (66a)

or equivalently,

q2 oN2 o\ 2S
h
~1 . (66b)

Using the deÐnition of and weS
h
, equations (45b) (45c),

obtain, after some algebra,

q2 oN2 o\ 3j5[1 ] 4j4] 3j8 qh/q]~1 . (66c)

From we then have for the convective Ñuxequation (43a),

wh \ s
T

b \ bs' , '\ s
T
s

\ Kqs~1S
h
. (66d)

Substituting the expression for and using the deÐnition ofSsthe j values, we Ðnally have

'\ c0 S1@2
Aq

ph
q
B3@2C

1 ] c1
q
pv
q

] c2
qh
q
D3@2

, (66e)

Pe\ c3(S')1@3 . (66f )

Here the timescales values are given by equations (33)È(34),
S \ gab*4s~2, * is the size of the largest eddy, and S is
related to the convective efficiency ! & Giuli by(Cox 1968)
the expression 2!] 1 \ (1] 2S/81)1@2. The coefficients c
values are given by c0\ (27n~4)1@2 Ko3, c1 4 2b5, c24

coincides3(1[ c1), c3\ n2@3(3 Ko)~1. Equation (66e)
with equation (42) of & Dubovikov It isCanuto (1998).
easy to check that since equations yield(33)È(34)

Pe[ 1 :
Aq

ph
q

,
qh
q
B

D Pe0 , (66g)

Pe\ 1 :
Aq

ph
q

,
qh
q
B

D Pe , (66h)

Equations and give(66e) (66f )

Pe[ 1 : 'D Pe , 'D S1@2 , (66i)

Pe\ 1 : 'D Pe2 , 'D S2 , (66j)

which are the well-known limits of the convective Ñux for
large and small convective efficiencies & Giuli(Cox 1968 ;

& MazzitelliCanuto 1991).

17. THE Ri] 0 LIMIT : PURE SHEAR

In this case, we obtain (to Ðrst order) from equations (45a)
and (45c)

DSl \ s0 , D\ d0 , Sl \ 475 , (67)

where we have used equations and Thus, the Ðrst(38c) (33a).
of becomesequations (44a)

l
T

\ Cl
K2
v

, Cl \ 0.1 , (68)

which is the well-known formula widely used in shear Ñows
studies, together with the two di†erential equations

with N2\ 0 to provide K and v (the so called K-v(48)È(49)
model).

18. FULL MODELS

We have presented three models, two are nonlocal and
one is local. The Ðrst nonlocal model is characterized by
two di†erential equations for K and v, andequations (48)

The nonlocality implies the use of the di†usion terms(49).
and which are given in The modelD

f
(K) D

f
(v) Appendix A.

has no mixing length.



FIG. 5.ÈFlux Richardson number vs. Ri for di†erent values ofR
f

Pe0.As explained in the text, is always less than unity.R
f

FIG. 6a

FIG. 6b

FIG. 6.È(a) Turbulent kinetic energy K, in units of vs. RiK0\ 4lv2&2
for di†erent values of As expected, the level of turbulence decreases asPe0.Ri increases, but when radiative losses are important and stratiÐcation
becomes weak, the slowdown is considerably reduced. (b) Same as in (a) for
the expanded region up to Ri\ 1.

FIG. 7a

FIG. 7b

FIG. 7.È(a) Momentum turbulent di†usivity in units of s vs. Ri forl
Tdi†erent As one can see, while the standard model gives no di†usivityPe0.for the present model does yield quite sizable values. (b) Same as inRi[ 14,

(a), but for the turbulent heat di†usivity in units of s vs. Ri for di†erents
TPe0.

FIG. 8.ÈTurbulent Prandtl number vs. Ri for di†erentl
T
/s

T
Pe0
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In the local model, both K and v are treated locally,
giving rise to equations and There are no di†eren-(51) (52).
tial equations to solve, but the model must specify a mixing
length.

19. RESULTS

Before we present some results of the present model, we
recall that in the models used thus far and Pe are takenl

Tto be

l
T

\ 13wl , Pe\ wls~1 , (69a)

and thus

3l
T

s~1\Pe . (69b)

Second, using the renormalization valid for small Pe,(3b)

Pe\ 1
4 Ri

. (69c)

becomesEquation (69b)

l
T

s~1 \ 1
12

1
Ri

, Ri\
1
4

. (69d)

The present model yields (see eqs. and[44a], [15], [53a]) :

l
T

s~1 \ 125
2n2 Pe0 Slt~1@2 , (69e)

s
T

s~1\ 125
2n2 Pe0 S

h
t~1@2 . (69f )

First, we solve for t in which we use equa-equation (51b)
tion with depending on Pe via and and(38c) j5,8 (33b) (33c)
thus on t itself because of The free param-equation (53a).
eter is which contains basic variables of thePe0 (eq. [53b])
problem under consideration. The functions are givenSl,hby and they depend on both Pe and Ri.equation (45),

In we present the Richardson Ñux number forFigure 5
di†erent values of the parameter deÐned inPe0 equation

(see also In we present the turbulent(53b) Fig. 4). Figure 6a
kinetic energy K in units of equations andK0, (53a) (53b)
for di†erent The lower the the larger is the valuePe0. Pe0,

of In we give an expanded version ofRicr. Figure 6b Figure
for values up to Ri\ 1. In we present the6a Figure 7a

momentum turbulent di†usivity versusl
T
/s, equation (69e),

Ri for di†erent while in we present the turbu-Pe0, Figure 7b
lent heat di†usivity versus Ri. We musts

T
/s, equation (69f ),

note that in the standard model represented by equation
there is no turbulence and thus no di†usivity, beyond(69d),

In addition, the values resulting from equationRi\ 14. (69d)
are smaller than those exhibited in Figures and even7a 7b
for the smallest values of The ratio of the twoPe0\ 102.
di†usivities, is shown in (see alsoequation (44b), Figure 8
Fig. 3).

20. CONCLUSIONS : NATURE OR NURTURE ?

Is shear-driven mixing intrinsically weak or did the meth-
odology and approximations used thus far underestimate
its real strength? Considering that the constructional incer-
titudes of all phenomenological models require that one
adopts several ad hoc approximations, the doubts are not
without justiÐcation. The question can be answered only if
one employs a turbulence model with a proven record of
performance and reliability in Ñows other than those
treated here so that its basic credentials are not in question.
The methodologies used thus far are far from being so.

We have documented both physically and mathemati-
cally that the approximations made within phenomenologi-
cal models militate to underestimate the efficiency of
shear-driven mixing thus feeding a negative assessment of
its real capability. We do not claim to have proved that the
new treatment will provide the mixing that stellar data
require. We only claim to have employed an internally con-
sistent treatment for all the physical variables, individually
and collectively, and to have shown that turbulence is alive
and well above the limit. The demise of shear-drivenRi[ 14mixing may have been announced somewhat prematurely.

Final judgement can, however, only be made after this
model is applied to a representative stellar case. Even
though the full mode contains 11 di†erential equations, it
seems hardly necessary to begin with such a model. To
decide whether the new model provides sufficiently more
mixing than the standard model, we think it suffices to Ðrst
employ the fully algebraic model we have developed.

APPENDIX A

THIRD-ORDER MOMENTS

The equations for the third-order moments are taken from In the presence of buoyancy, shear, and rotation,Canuto (1992).
they are

AD
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2 h3 . (A4)

where and The analytical solution of equations in the stationary case can beq34 q/2c
*

c
*

\ 7, c10 \ 4, c11\ 15. (A1)È(A4)
found in et al. The di†usion of v, can be found in & DubovikovCanuto (1994b). D

f
(v) Canuto (1998).

APPENDIX B

THE CONSTANTS

For the constants j, we suggest two sets of values :equation (38c),

j1\ 0.127 , j2 \ 3.36] 10~3 , j3\ 9.1] 10~2 , j4\ 0.1 , j6\ 16 , j7\ 0 , c1\ 13 . (B1)

j1\ 0.107 , j2 \ 3.32] 10~3 , j3\ 8.64] 10~2 , j4\ 0.12 , j6\ 0.4 , j7\ 0 , c1\ 13 . (B2)

The values in correspond to the Ðrst set of valuesequations (B2) (eqs. [B1]).
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